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Abstract—In recent years, deep learning approaches have been
leveraged to achieve impressive results in object recognition.
However, such techniques are problematic in real world robotics
applications because of the burden of collecting and labeling
training images. We present a framework by which we can direct
a robot to acquire domain-relevant data with little human effort.
This framework is situated in a lifelong learning paradigm by
which the robot can be more intelligent about how it collects
and stores data over time. By iteratively training only on
image views that increase classifier performance, our approach
is able to collect representative views of objects with fewer
data requirements for longterm storage of datasets. We show
that our approach for acquiring domain-relevant data leads
to a significant improvement in classification performance on
in-domain objects compared to using available pre-constructed
datasets. Additionally, our iterative view sampling method is able
to find a good balance between classifier performance and data
storage constraints.

I. INTRODUCTION

Recent years have seen a significant rise in performance
of computer vision techniques as applied to a wide variety
of robotics tasks. Deep learning approaches in particular
have allowed for large performance gains in critical robotics
applications such as object recognition and classification [1]–
[5]. Despite the success of these models, they are limited in
their applicability to robots operating in real world domains.
Deep models must be supplied with large amounts of training
data, which typically require a great deal of human effort to
create. While large image corpora of common objects exist
for training good general models [6]–[8], such datasets are
unsuitable for representing the extent of variation found in
robotics environments. Additionally, images contained online
are often distinguishably different from image views a robot
will be presented with during operation. For example, online
images are typically taken in good lighting conditions, from
human heights, and with the subject in center frame. Robots,
however, might be operating at different heights, in a variety
of lighting conditions, and with no predictable structure to the
layout in their current view.

To address these challenges, we provide a framework by
which a human user can direct a robot to autonomously
capture domain-relevant data for use in training classifiers of
household objects in the user’s personal environment. By using
a simple click interface, the user is able to intuitively specify
which objects he or she would like the robot to learn. The

Fig. 1. Our autonomous data gathering framework capturing training data of
a coffee mug using a Fetch robot.

robot then captures a series of image views for use in training
without placing additional demands on the human’s time. In
this way, the robot is able to effectively learn the objects in
one’s personal environment without the intensive human effort
of manually constructing a dataset.

Additionally, we present steps toward leveraging our data
capture framework in a lifelong learning domain. While
most previous work in image classification assumes a pre-
determined, static dataset for use in training in batch fashion,
such a paradigm is of limited use in real world robotics
domains. Given the extensive variation of possible configu-
rations and viewpoints in personal environments, it is dif-
ficult to create a singular, environment-independent dataset
that adequately represents the learning space. Recently, more
work has started to approach the learning problem from a
lifelong or never-ending learning perspective. By continuously
incorporating accumulated knowledge, such approaches are
able to increasingly learn the complexities of an environment
over time. In this work, we present initial steps toward
bringing our data capture method into a lifelong learning
setting. By iteratively training only on images that improve
learning performance, our method retains a limited training
set of representative object views to lessen the storage and
computational demands on repeated model training. Given
the continuous acquisition of data in the lifelong learning



paradigm, such data management is important for allowing
model retraining to happen within a reasonable timeframe
and not overwhelm storage resources. By comparing against
capturing a pre-specified number of image views of each
object instance, we show that our approach for intelligent
data capture approach is able to find a good trade-off between
classifier performance and storage constraints.

The rest of the paper is organized as follows. First, we
provide relevant background on object recognition, lifelong
object learning, and previous interfaces for teaching objects to
robots (Section II). Next, we specify the details of our data
collection and training framework (Section III). We then de-
scribe an experiment by which we compare our data collection
strategy against networks trained on pre-constructed datasets
as well as investigate the performance benefits of our iterative
view sampling approach (Section IV). Finally, we discuss the
result of our experiments (Section V) and suggest areas for
future work in applying our data capture framework toward
the lifelong learning of objects (Section VI).

II. RELATED WORK

A. Object Recognition

Approaches to object recognition typically involve the su-
pervised training of classification models on labeled training
data. While object recognition is commonly applied to images,
approaches handling other forms of data such as point clouds
[9], [10] and RGB-D images [11], [12] exist as well. In
recent years, deep learning approaches such as convolutional
neural networks (CNNs) have been able to achieve impressive
results in object recognition and related computer vision
problems [1]–[5]. One benefit of such techniques is that
they can effectively learn features that are important for the
classification process, without requiring those features to be
explicitly defined a priori.

Data driven methods depend on being supplied with an
intensive amount of labeled training data, which typically
requires a great deal of effort by humans to annotate. In the
computer vision domain, a number of sizable image datasets
have been produced over the years, which have served as
standard testbeds for computer vision problems [6]–[8]. De-
spite their popularity, these datasets represent a relatively few
number of classes and are limited in their applicability to real-
world robotics applications. As an illustrative example, Sun
and Fox [13] apply an object recognition classifier trained on
the large-scale ImageNet dataset [6] to a much smaller RGB-
D database specifically designed for robotics applications [14]
and found that precision across the RGB-D dataset was 33%
lower than across the same objects types than across the
ImageNet test set. The authors note the significant difference
in appearance between images in the more general ImageNet
dataset and the robotics specific set, despite containing the
same object classes. As supported in our experiments, we
maintain that the large variability in real-world scenarios limits
the applicability of even the relatively few robotics-specific
datasets to unseen environments. To address this, we provide

an interface for acquiring data relevant to a user’s specific
scenario that requires only a limited amount of human effort.

Domain adaptation and transfer learning methods provide
complementary approaches for adapting data from a different,
but related source domain to a target domain. However, these
approaches still require matching target domain data to apply
the transfer. In our work, we apply a related technique specific
to deep learning known as finetuning, which allows feature
representations learned for one task to be applied to new tasks
[15]–[17]. As is common amongst a number of other computer
vision applications, we leverage the large variability in the
ImageNet dataset for training good generic image features that
we repurpose for use in our learning problem. This has the
added benefit of allowing our classifier to learn a good model
using relatively few captured images compared to larger, pre-
constructed datasets since the generic image features have
already been learned and only need to be correctly associated
for our target problem.

B. Lifelong Object Learning

While many object recognition systems in particular are
trained once and then tested on a pre-defined dataset, personal
robots that are to be deployed in longterm scenarios must
be able to continuously expand and refine their knowledge
throughout their deployment in what is often called lifelong
learning. Recently, a number of approaches have investigated
the online training of deep networks, by which a model can
be trained iteratively on individual data instances as they
become available instead of having to collect all training into
a single set for batch training [18]–[21]. Still, many of these
approaches require or could at least greatly benefit from main-
taining a validation set of previously seen data for retraining
so as not to forget previously learned knowledge. However,
if continually expanding training sets are not well-managed,
they can easily surpass available storage capacity and require
increasingly impractical amounts of time to train over, but this
has not been addressed in current work. Approaches specific to
the lifelong learning of objects includes the Never-Ending Ob-
ject learner of Sun and Fox [13], in which a semantic hierarchy
of object names is constructed by using crowdsourcing to learn
relations between objects. In this approach, exemplar images
for labels in the hierarchy are continuously stored over time.
While this supports the continual learning of their models, it
similarly does not consider limitations regarding the continual
acquisition of training data.

In addition to providing a framework for the collection of
domain-relevant data, we take initial steps toward applying
our work to the lifelong learning paradigm. In order to lessen
demands on storage and training resources, our method limits
data capture so as to store only a limited set of training images
as are useful to the learning problem rather than capture an
arbitrary and possibly superfluous number of images. While
this approach does not increase the sustainability of continual
data capture in the limit, these are our first steps toward
constructing a representative set of training data that accounts
for limitations in storage and training resources.



C. Object Instruction Interfaces

In addition to techniques for supporting the continual learn-
ing of a model over time, a number of interfaces have also
been developed by which human partners can teach objects to
robots in a progressive manner. In [22], Lopes and Chauhan
present an interface by which a user collects training examples
for a robot by using a mouse to point to an object in a
robot’s visual feed and providing the object’s name. Using
edge-filtering, the boundary of the object is extracted, and the
example is fed into an incrementally trained classifier. While
this approach is useful for achieving high quality annotations,
a user must annotate every image used for learning. In our
work, we lessen demands on a human user by requiring
only a single interaction for multiple data capture instances
of a given object. In work by Villamizar, et al. [23], [24],
uncertain frames from a video stream pre-recorded on a robot
are presented to a human user for annotation, with annotation
consisting of drawing a bounding box around objects of
interest and labeling them. Human interaction is minimized by
presenting fewer queries as classifier performance improves.
In our work, we aim to similarly minimize human interaction
time but do not depend on data that is available from pre-
recorded streams. Rather, our framework allows a robot to
capture relevant data for the learning task at hand.

In [25], Azagra, et al. present a framework by which a
human user teaches objects to a robot by either pointing at
a given object and speaking its name, grabbing the object and
moving it directly in front of the robots camera while also
announcing its name, or by describing the object’s placement
within the robots current field of view. Similar work by Lim,
et al. [26] describes an interactive object teaching interface
that tracks objects on a table, displays them using the Robot
Operating System (ROS) [27] visualization tool, RViz [28],
and depends on human users to provide object labels. Users
can identify an object using a corresponding tracking number
or by physically pointing, which is detected by the robot using
skeleton tracking. Since objects are being tracked, the user can
provide additional views for training by moving the objects
around in the robot’s view. In our approach, we similarly
use RViz as an easy-to-use interaction interface, but put less
requirements on the user by having the robot sample views
instead of depend on human demonstrations. Additionally, our
approach only captures as much data as is needed to learn a
given object.

While previous works provide intuitive interfaces allowing
a human to teach object examples to robots in a progressive
manner, they are dependent on the user for demonstrating
different object views or are restricted by only considering pre-
collected data. Our work builds on these approaches by using
a similarly intuitive interface, yet autonomously captures new
data instances for learning. Additionally, our approach only
captures as much data as is useful for training the classifier.

III. PROBLEM FORMULATION

In this section, we describe the steps of our framework for
constructing an object classifier for use in a user’s personal

Fig. 2. Flowchart of the proposed method. First, the user directs the robot
toward an object to learn. The robot then captures a set of images by randomly
sampling object views. Captured images are iteratively added to a growing set
for classifier training until prediction performance across the set of captured
images stops improving. The robot is then free to repeat the process for new
objects.

environment. First, the user must orient the robot toward the
object he or she would like it to learn. Using the RViz graphical
user interface [28], the user then selects the object in the
robot’s current view frame. The robot will then autonomously
gather data of the object by randomly sampling a set of
image views in the 3D space around the object. As part of
our iterative learning approach, the robot will continuously
evaluate its learning performance over captured data and halt
training when performance stops improving. Captured images
that are not trained on are then discarded such that a minimal
set of images is maintained for future retraining. This process
can then be performed again on new objects as the user points
them out.

A. User Interaction and Data Capture

In order to specify the object of interest, a user is presented
with a point cloud of what the robot can see using RViz. The
user then selects a set of points bounding the object inside
the point cloud using the point publishing functionality (see
Figure 3). For each specified point, a coordinate transform is
calculated between it and the robot’s current world map. These
transforms are later used for finding the object of interest
during image capture.

During data capture, the robot randomly samples 3D lo-
cations from which to view the selected object within an
experimentally-tuned area around the object. For each random
sample, the robot orients itself such that it is facing the spec-
ified object. We assume that the object stays relatively static
during data capture. To localize objects during data capture,
we additionally tried having the user place a fiducial marker
(ARTag) next to the object of interest such that the robot
could find the specified object using the relative location of the
marker. However, we found that the robot could not robustly
detect the markers (distinct as they were) at longer distances or
extreme angles. Since the use of markers additionally placed
another constraint on the human user, we forewent their use
and depended on the robot’s localization ability using the ROS
Navigation package [29] to direct data capture.



Fig. 3. The user interface in RViz by which an end user picks points
surrounding the object to be learned. A static transform between the selected
points and the world map is consulted to direct data capture around the object.

B. Network Training

Using the data collection framework, the robot will capture
a set number of images of the specified object. Our learning
approach then interleaves iteratively adding a captured image
to a growing training set and retraining the classifier on the
training set. Classifier performance on all captured images of
the object of interest is tracked, and training is halted once
classification performance stops improving. In this way, a
representative subset of captured images is stored to lessen
the storage requirements and computational burden of future
retraining. For our network architecture, we use Google’s In-
ception network [30] as implemented in the Keras framework
[31]. Since we perform object learning with relatively few
images, we finetune the network after pre-training on the large-
scale ImageNet dataset to learn generic image features. As an
initialization step and point of comparison, we also pre-train
class weights on scraped Flickr [32] images of our specified
object classes.

IV. EXPERIMENTS

We applied our approach to an experiment in which a human
user directed a Fetch robot equipped with and RGB-D sensor
to learn instances of six common household object categories.
After placing an object on a table, the user oriented the robot
toward the placed object and selected the object in the RViz
GUI. The robot then randomly sampled the relevant space
around the specified object to produce view locations (x, y,
spine height) and planned a path between points using the ROS
Navigation package [29]. Following this process, a random set
of 100 image views were captured for each object. Using our
learning approach, the robot would iteratively add a captured
image to the growing training set and retrain the classifier
until performance across the entire set of 100 images stopped
increasing. For our experiment, data capture and training were
performed disjointly so that captured images could be used
for testing a variety of network parameters without having to
repeat data capture. Network training was performed on four
object instances of each of the six object classes. Data of a

fifth object instance per class was additionally captured to test
the generalization performance of learning. The deep learning
training was performed using an NVIDIA GTX 1080 GPU.

To test the benefit of capturing in-domain data over utilizing
pre-constructed datasets, we compared our approach against
training on 1000 random images of the six object classes
scraped from Flickr using the scraping implementation of Hays
and Berg [33]. Images scraped from the web form a good
baseline, as many household objects do not appear in specially
constructed datasets. Baseline training was additionally used
for initializing further training. We also tested against training
on a subset of images corresponding to the selected object
classes from a pre-constructed object dataset (the RGB-D
dataset of Lai, et al. [14]) to represent scenarios in which
such data is available. For this dataset, we similarly trained a
network on four instances of each of the six object classes,
leaving a fifth instance of each for testing generalization.
Furthermore, while the RGB-D dataset contains both depth and
RGB image data, we constrain our experiments to only using
images for simplicity. Additionally, to test the benefits of our
iterative learning approach, we compared resultant classifier
performance from our method against batch training on a pre-
specified number of images for each object instance.

V. RESULTS AND DISCUSSION

To test our trained networks, we used all images for all five
instances of each object class for both our captured data and
the pre-constructed RGB-D dataset. This case tests a network’s
general performance across images in a target domain. While
images from the corresponding sets appear in both training
and testing, we note that we are interested in overfitting to
a user’s personalized environment. Additionally, we test our
networks on the only held out instance of each object class
to test generalization performance regarding related images in
the user’s general domain.

In Figure 4 and Table I, we compare the effect of training
set on test set performance. We see that our results validate
the proposition that training on domain-relevant data matters.
We see that training on our captured data (using either batch
training on all 100 images of each instance or our iterative
approach) leads to significantly higher test performance on
captured data when compared to training on either the Flickr
or RGB-D baselines (roughly 70-80% test accuracy as opposed
to around 40%). This is true when tested on all captured
data as well as the unseen fifth instance of each object
class. Similarly, we see that general test performance on the
pre-constructed RGB-D dataset is highest when trained on
related data. Strangely, the learning model seemed to highly
overfit when trained on the RGB-D dataset, with high test
performance not translating as well to the held out instances.
In Table I, we additionally compare the number of images in
each training set and the time it took to train our classifier
on the associated dataset. Training time scaled linearly with
number of images, with both baselines and the batch training
over captured images taking orders of magnitude more time



TABLE I
TEST PERFORMANCE ON SPECIFIED TEST SETS AS WELL AS NUMBER OF IMAGES AND TRAINING TIMES FOR THE VARIOUS TRAINING SETS TESTED.

Captured: All Captured: Held Out RGB-D [14]: All RGB-D [14]: Held Out Number of Images Training Time (min)
Flickr baseline 38.0± 2.0% 37.2± 3.1% 69.3± 4.3% 67.7± 4.0% 6000 108.0± 0.0
RGB-D [14] 41.3± 1.2% 40.1± 0.8% 91.6± 0.5% 60.5± 2.4% 14782 261.0± 0.4

Batch captured 80.9± 1.0% 80.3± 1.7% 60.2± 2.1% 66.1± 3.1% 2400 42.5± 0.1
Iterative selection 70.71± 3.5% 71.5± 4.6% 60.6± 6.0% 63.8± 8.4% 142.7± 5.9 2.1± 0.1

Fig. 4. Test accuracy on captured and RGB-D dataset data when learning
models are trained on the Flickr baseline, RGB-D dataset images, and captured
data. Training on in-domain data leads to a marked improvement over training
on other datasets. Interestingly, training on the RGB-D dataset seemed to
greatly overfit such that the higher test performance did not translate to the
unseen examples within the dataset.

Fig. 5. Captured data test performance when the classifier is trained either
iteratively or in batch on captured data. Batch performance is reported for a
number of pre-specified number of images to train on. The iterative method
reaches a nice trade-off between classifier performance and number of stored
images, even outperforming the batch method when trained on a comparable
number of images.

to train compared to our iterative approach due to their much
larger size.

Figure 5 further illustrates the computational savings of
our iterative training method compared to the batch approach.
Classifier accuracy is reported for batch training over a spec-
ified number of images. We see that training on a larger
number of images has diminishing returns, with an elbow
in the curve forming in the range of a few hundred images.
In comparison, we see that our iterative approach selects a
number of images that roughly corresponds to the elbow in
the curve. Additionally, this selection method outperforms the
batch method when trained on a similar number of images.
Since the iterative method is not constrained to treat each
object instance equally, it is able to direct more training
resources to objects it has a harder time learning, halting
the learning only once a given object instance has been
learned adequately. In this way, the iterative approach is able
to achieve competitive performance with applying the batch
approach over all captured images while using an order of
magnitude fewer images (bringing network training time down
from almost an hour to a couple of minutes in this case).
The storage and computational savings associated with the
iterative approach will allow it to scale much better to a
lifelong learning scenario, allowing the framework to learn
a much greater number of object classes given similar space
and computation constraints.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a framework by which a
human user can direct a robot to learn objects in his or her
personal environment with relatively little effort. As shown
by our results, such a method for capturing domain-relevant
data leads to significantly higher classification performance
compared to using available web-based datasets. By leveraging
the ROS framework, our data capture method can be easily
integrated with a large number of supported robots. We plan
on releasing our framework implementation as a ROS package
to further support end users.

Furthermore, this data capture framework allows us to begin
investigation into the continual learning of object classes. In
this paper, we have presented our first steps in this regard
by lessening dataset burdens on storage and computational
resources. By keeping track of learning performance over
a larger collection of sampled images and only iteratively
growing the training set while classification performance is
increasing, our method is able to achieve good learning
performance using relatively few images. While our method
requires the robot to capture a number of images that are



not actually added to the training set, the compounded time
and space savings in retraining over a robot’s lifecycle are
more important. However, while this approach scales better
over time than naively capturing a pre-specified number of
images per instance, it still involves an unbounded collection
of images. In future work, we are interested in investigating
methods that are more explicit in maintaining representative
subsets of each object class. By continually filtering such
subsets to better represent captured data, training sets can
be adjusted to meet storage or computational constraints. We
are also interested in integrating this work with recent model
architectures for lifelong deep learning in a longterm object
learning experiment.

In future work, we would also like to make a number of
improvements to the data capture implementation itself. Since
the current approach relies completely on the robot’s ability
to localize to find specified objects, objects can appear out
of frame when localization is erroneous. We would like to
integrate this approach with image-based object trackers to
make sure an object stays in view. Furthermore, while random
uniform sampling of object views can be expected to represent
the learning space fairly well, we are interested in testing
whether more explicit view planning methods (e.g., space fill-
ing approaches, geometric planning around observable object
volume) result in more representative datasets.
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