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Abstract— In this work we address the problem of identifying
informative images gathered by underwater sonar. We define
informative frames as those containing enough clarity and
substance (e.g. target of interest) to be useful in higher level
tasks such as map building or the inspection of underwater
environments. This classification is important, as noise de-
grades many of the sonar images captured to the point of
uselessness, and analyzing them for these higher level tasks
is computationally wasteful. To identify high-quality frames we
leverage the atrous convolution architecture which is composed
of dilated filters that utilize a more global context than standard
convolutional filters. This is particularly important in the sonar
domain, where compared with standard cameras there is a lack
of strong local features and a large amount of noise. We test
our model on sonar imagery of underwater objects gathered
using a sonar mounted on an underwater vehicle. We show that
our atrous model identifies high-quality frames with a higher
average precision than previous approaches when completing
transfer learning without sacrificing performance in situations
where the training data is visually similar to test data.

I. INTRODUCTION

Underwater vehicles are now used in a variety of ap-
plications, including ship hull inspection, underwater mine
detection, and underwater surveying [1], [2], [3]. During such
missions, oftentimes exteroceptive sensory data in the form
of camera or sonar images, is captured for mission support.
However due to the large amount of data being captured, it is
often difficult for a human to extract meaning in realtime [4].
In conjunction with this difficulty, humans uniquely have the
ability to complete higher-level tasks such as the annotating
of image features in sonar imagery [5]. This motivates the
need for introspection on such vehicles: human operators
often cannot monitor large streams of image data in realtime;
however they are capable of completing higher level tasks
for mission success. In this work we enable the automatic
processing of underwater sonar data for proposal of high-
quality information to a human operator who can use this
for tasks such as finding an object of interest or the 3D
reconstruction of underwater environments.

Due to the turbidity of water, sonar sensors, as opposed
to standard cameras, are oftentimes the preferred sensor in
underwater exploration and monitoring missions. Standard
underwater imaging sonars can produce images at tens of
Hz. However many of the frames produced do not contain
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Fig. 1: Example of traditional 3x3 filter (left) and a 3x3
dilated filter (right). The dilated filter uses a larger neighbor-
hood but still only uses 9 pixels to compute the output.

useful information (e.g. target of interest, clear imagery of
the environment). The poor quality is often the result of
noise in the images, the possible sources of which include
multipath reflection off the seafloor, non-diffuse reflection of
the acoustic wave off of the object, and the interference of
projected and reflected acoustic waves [6]. An example of a
sonar target in the shape of an X that is corrupted in image
space can be seen in Fig 3b. In our experiments we found
up to 64% of the incoming images did not contain enough
clear features for a human operator to recognize the object
being displayed. Thus the perceptual algorithms (or human
in charge of the mission) waste valuable time analyzing
poor and uninformative imagery. In this work we develop a
perceptual quality assessment network which classifies sonar
images as either containing useful information or not. This
approach would relieve researchers of the need to constantly
observe this data as well as allow autonomous systems to
spend computational resources more efficiently.

Traditional algorithms for image quality assessment that
were developed for cameras are insufficient for use in sonar
as the amount of noise is much higher and the resolution
of sonar imagery is much lower [7]. A more global context
than traditional methods allows for noise and larger features
to be identified more reliably.

To achieve this increase in global context, in this work
we utilize the atrous convolution architecture which has
previously not been examined on sonar data. Although
initially applied in the signal processing domain, atrous
convolution has gained recent popularity in the computer



vision community for tasks such as dense feature extraction
as well as multi-scale image analysis [8], [9], [10]. In
contrast to a standard convolutional neural network (CNN)
this architecture uses dilated filters as seen in Fig. 1. Dilated
filters use pixels in a larger neighborhood around the point
of interest than standard convolutional filters. This increase
in size of context leads to a more generalizable classifier that
is less dependent on strong local features.

In this work we develop a network that is extendable:
it is able to identify informative frames containing objects
different than those trained on. We show that our network
is able to achieve this transfer learning capability without
compromising performance in situations where the test data
is similar to the training data. We also show that our model
is able to classify images in realtime on sonar data taken of
different objects across different deployments of our vehicle.
Both realtime processing and transfer learning capabilities
are important characteristics in deploying systems that will
be able to reason about the world around them in a safe and
efficient manner.

II. BACKGROUND

A. Sonar

In order to understand the need for a global context
in sonar image classification, it is important to detail the
sonar imaging process. In this work we use a Gemini
Tritech 720i Multibeam Sonar onboard a tethered Seabotix
vLBV300 underwater vehicle. The tether provides realtime
data transmission of sonar images to an offboard computer
which can be used for realtime processing and display. The
sonar is a low-cost and portable model designed for mounting
on small underwater Remotely Operated Vehicles (ROVs). It
is in a class of imaging sonars including the SoundMetrics
DIDSON and Aris Explorer 3000 as well as BlueView’s
M900-90 which have been used in previous work [5], [11],
[12]. In this work we develop a method that is appropriate
for use with imaging sonars in general, including the models
listed above.

The sonar insonifies objects by emitting an acoustic wave
and measuring the time-of-flight and strength of return for
the wave reflected back from the environment. The time-
of-flight measurement gives the range r to the object and
sending out multiple waves, or beams, as shown in Fig. 2b
gives bearing measurement θ to an object. The strength of
return defines the pixel value (0-255) for that return in sonar
image space. As can be seen in Fig. 2, during this imaging
process, the elevation angle φ of the object is lost.

Given the goal of finding informative frames, the image
quality assessment problem for sonar can been approached in
two general ways: global image analysis or more localized
image feature extraction. Kalwa and Madsen developed a
global method for predicting image quality by training a
neural network using 3 features: the mean pixel value (as
a measure of noise), entropy (to measure complexity of the
image), and substance (a custom metric which measures the
amount of strong returns in the image) [13]. Our preliminary
tests of this method suggest that because our images include

(a) Computation of range
and elevation angle

(b) The acquisition of
bearing by emitting

multiple beams.

Fig. 2: Mapping from Euclidean to polar coordinates.

(a) Informative frame

(b) Non-informative frame

Fig. 3: Examples of informative (an object is easily recogniz-
able) and non-informative frames while inspecting a target in
the shape of an X. In our experiments we found on average
about 39% of the captured frames to be informative.

nonuniform noise as well as noise that contains many strong
returns, that using only these three features is not expressive
enough for our applications.

Feature extraction from sonar imagery has received much
research attention lately. Ji, et al. use standard computer
vision techniques (Canny edge detection and Hough trans-
forms) to extract features from sonar imagery. However these
techniques rely on the use of strong gradients in the image to
identify points of interest [11]. Given the strong gradients of
corrupted imagery, as seen in Fig. 3b, these approaches are
not robust for our applications. Johannsson, et al. identify
objects by using the strong image gradients between the
objects and their shadows [14]. While this approach works
well in their data gathering process, the presence of a strong
shadow is the result of viewing the object from a low
altitude and thus is not a fully general approach. We note
that shadows were not prevalent in the sonar imagery we



collected. Aykin and Negahdaripour use the brightest pixels
in the image as features which are then clustered to form
objects [15]. Given that noise can often appear as strong
returns in sonar imagery, this approach has the potential to
return many false positives and is thus not appropriate for
our purposes.

There also exists work similar to ours in finding represen-
tative imagery for use in summarizing underwater missions.
Kaeli, et al. create summaries of camera imagery over
a long sequence by quantifying, based on a prior, how
”surprising” it is to see certain images [4]. They quantify
this in part by extracting Quantized Accumulated Histogram
of Oriented Gradient features from each image. While this
method works well for camera imagery, and allows for the
acoustic transmission of summaries to a human operator,
local feature extraction is not robust to classifying sonar
imagery.

In this work we demonstrate that a balance of local
and global feature extraction, rather than each individually,
improves the average precision of our classifier. We show
that global analysis is not as powerful as CNN methods
for extracting local features and that current CNN methods
cannot generalize as well as methods with dilated filters.

It is also important to place this work in the context of
previous work in the area of identifying useful data. There
exists a large amount of work in selecting particular data
for active learning (to improve the speed to converge for
a learner or to improve the diversity of training data) [16],
[17], [18]. This objective has been addressed in a variety of
ways, many times by extracting local features from the data.
For example, Demir and Bruzzone extract SIFT features from
top-down imagery of outdoor environments in order to select
informative images that decrease the uncertainty and increase
the diversity of the training set, and are representative of the
distribution for the images being evaluated [17]. Holub et al.
reduce the number of training examples needed for training
a classifier by using the Spatial Pyramid Match Kernel of
Lazebnik method of matching[18]. This method also relies
on extracting SIFT features.As previously discussed, such
low-level features often rely on information that is not
reliable in sonar imagery.

While these works have a similar objective to ours (the
selection of informative frames) our criteria for identification
is different than previous work. We evaluate images not on
their utility to a learner, but rather on their usefullness in
being presented to a human operator for the completion of
higher level tasks. This is encapsulated in our training pro-
cess, where the binary ground truth for each training image
is only true if an image contains enough clear information
to be utilized by an operator for higher-level tasks.

Atrous filters allow us to achieve this objective by using a
larger context than normal filters. This is particularly useful
in underwater exploration missions, where a human operator
does not have the ability to evaluate incoming imagery in
realtime for their utility in higher level tasks.

B. Atrous Convolutional Neural Networks

The building block for convolutional neural networks is
the convolution operator, in which a filter k of kernel size
rxr is slid over an image I and convolutions are computed
for some output pixel [l,m] of image Y as:

Y [l,m] =

r∑
i=1

r∑
j=1

k[i, j]I[l − i,m− j] (1)

In atrous convolution, the output pixel [l,m] of image Y
is computed from image I using a dilated filter k of size rxr
which uses pixels spaced at some dilation rate d:

Y [l,m] =

r∑
i=1

r∑
j=1

k[i, j]I[l − id,m− jd] (2)

An example of a filter with dilation rate 4 can be seen
in Fig. 1b. This increase in global context is important for
sonar images because large-scale noise is prevalent while
strong local features are not.

While atrous networks have yet to be used for analysis of
sonar imagery, standard convolutional networks have gained
recent popularity in this area. Kim, et al. use a CNN to
classify the occurrence of another vehicle in sonar images
[7]. They use a sliding window approach not only for object
detection but also for object localization in image space. We
compare to this method and show that atrous convolution
provides a more generalized approach that allows for a
higher average precision when given images of objects it
has not been trained with. Kim, et al. extend this approach
to incorporate the You Only Look Once method and thus
achieve realtime capability [19]. In our method we maintain
realtime performance by increasing the stride length of the
sliding window.

Atrous convolution has gained much recent popularity in
the computer vision community, and many approaches have
been developed for utilizing these dilated filters. Yu, et al.
use atrous filters in series (similar to Fig. 4a) to increase the
performance of image segmentation by incorporating objects
at multiple scales without decreasing image resolution (as
would occur in max pooling) [10]. Chen, et al. use atrous
filters with different dilation rates in the same layer (similar
to Fig. 4b) to increase performance in image segmentation
[20]. We examined both the series and single-layer architec-
tures as well as the parallel pretrained architecture and found
the series architecture to perform the best on sonar imagery.

There has also been extensive work using deep learning
in sonar image quality analysis and object detection with
Synthetic Aperture Sonar (SAS). Williams and Dugelay use
a deep neural network to distinguish cone shaped objects
from rocks [21]. They address the problem of noise by
using multiple views of the objects. In this work we address
noise and remove the requirement for multiple images by
using dilated filters. McKay, et al. developed a CNN based
method using pretrained networks for use with SAS [22].
While they achieve impressive results, we note that their
imagery is captured from far above the object and their noise



(a) Series architecture

(b) Single-layer (multiscale) architecture

(c) Pretrained parallel network architecture

Fig. 4: Representations for the atrous convolution architec-
tures that were tested.

is artificially added after data collection. In our imagery the
noise is naturally occurring and our viewing distance to the
object is very small. These mission trajectories allow for
close inspection of features in the environment but result
in non-uniform degradation of the object as well as various
regions of strong returns that do not necessarily correspond
to objects.

III. ARCHITECTURE

As summarized in Fig. 4, we tested multiple configurations
for the atrous architecture including: placing the filters in
series, incorporating multiple dilation rates in a single layer,
and utilizing two parallel and pretrained networks. The series
method (Fig. 4a) allowed dilated filters to interact with the
image features once passed through a standard convolutional
layer. The single-layer architecture (Fig. 4b) allowed filters
with different dilation rates to extract features over the same
input image. The filters were then combined, pooled, and
sent to the next layer. Finally, the parallel network (Fig. 4c)
was designed by separately pretraining two networks (one
using standard convolution and one using atrous convolu-
tion). Once trained, the dense layers were removed and the
two networks were combined into one dense layer. To test
each architecture and set of parameters we held out 1000

TABLE I: Performance of different atrous architectures

Architecture Best average precision (transfer learning)
Series 0.52±0.04

Single-layer 0.47±0.02
Pretrained parallel 0.51±0.02

frames of the Multi dataset which was used for testing the
models (see Section IV-A for a full dataset description). We
evaluated the architectures based on their average precision
performance while evaluating imagery of objects unseen in
training. Within each architecture we tested predefined and
discrete values for multiple parameters including: kernel size,
number of filters, dilation rate, and number of layers.

As shown in Table I, we found aligning the atrous filters
in series, as seen in Fig. 4a, achieved the highest average
precision. While the pretrained parallel approach performed
almost identically, the series architecture requires no pre-
training and is thus preferable.

Our network evaluates entire sonar images by a sliding
window approach. From sonar images of size 256x235,
subwindows of size 102x94 are extracted from the original
frame and resized to 32x32 before being fed into the network.
The subwindow size was chosen to be twice the size of
the average hand labeled bounding box of objects in our
images. This allowed for more contextual information to be
leveraged in classification. To determine a threshold on the
model output for informative predictions, we generated a
precision recall curve from the model performance on the
validation data and chose a threshold corresponding to a
precision of 0.75. This resulted in a threshold of 0.99. We
chose a threshold corresponding to a high precision as due
to high data capture rates, we value precision in detecting
informative frames over the recall of many informative
frames. While evaluating each subwindow, if the network
found an object with over 0.99 probability, the entire frame
was classified as informative. A stride length of 10 between
subwindows was used to allow sonar frame prediction in
realtime without significant loss in performance.

IV. EXPERIMENTS AND RESULTS

A. Datasets

The data used for this work came from 3 separate deploy-
ments of our Seabotix vLBV300 Remotely Operated Vehicle.
In each of these deployments the data was captured in a
passive manner, that is a human operator drove the vehicle
to inspect the object of interest while the sonar image data
was recorded. Thus, each dataset is a video or contiguous set
of images containing both informative and non-informative
frames at naturally occurring intervals.

Dataset X1 contains data collected of the X target (see
Fig 7a) in the Oregon State University pool during our
first deployment. Dataset X2 contains data collected of the
same X target in the pool during a different deployment
with different environmental noise characteristics. Finally,
dataset Multi1 contains data from all four of the objects in
Fig. 7. Each dataset contains a different number of frames



Fig. 5: The atrous convolutional network used. The parameters (including the use of the atrous filters in series) were tuned
by testing discrete options.

Fig. 6: The precision recall curve generated from validation
data used to choose a threshold for informative vs. non-
informative frames. We chose a threshold corresponding to a
precision of 0.75, allowing us to propose informative frames
at a high rate.

with objects that could be confidently identified by a human
operator. These distributions are summarized in Table II. The
low number of high quality frames underpins the need for
introspection in such vehicles, as much of the data captured
is non-informative in completing higher level tasks.

The ground truth labels for these frames are from the hand
labeling of frames where we identify a frame as informative
if it consists of an object that can be clearly identified. This
identification often can only be achieved with the existence of
multiple distinguishing features. For example, identifying the
four corners of an object would not be enough to identify the
frame as informative because it could be the X or the Square
target. However, noticing lines intersecting in the middle of
the target would be enough to confidently identify the X
shaped target. Clear identification of an object, as opposed
to simply detecting a feature in an image, is important as this
imagery is used for higher-level tasks such as monitoring or
inspection. In such tasks, images containing information the
human can accurately interpret are much more useful than
those containing features that must be tracked and grouped
together over time. It should be noted that while we make

the condition for an informative frame the occurrence of a
set of distinguishing features, our method is still flexible. By
evaluating our method on the transfer learning case (where
the training and test datasets contain imagery of different
objects) we ensure that our method is not overfitting to
certain shapes or features.

TABLE II: Summary of the datasets.

Dataset Total number of frames Percent informative frames
X1 5000 36%
X2 1107 56%

Multi1 5000 39%

Notes: The total number of frames contains both informative and
non-informative frames. The ground truth label for a frame is de-
termined by a human operator determining if they can confidently
identify an object in the frame.

B. Experimental Design

In developing models for use in the field it is important
to not only be able to identify objects that have been trained
on, but also be able to reason about objects not seen in
training. We thus tested the capabilities of our model in
both situations. In each of the experiments we primarily
trained on data containing the X object (datasets X1 and
X2). The difference between experiments was the varying of
2 binary parameters, namely seeding the model with multi-
object data and the presence of the X object in test data.
Seeding the model with multi-object data gave the model
600 frames of multi-object data to train on, about 33% of
which were informative frames. Because the multi-object
data contained imagery of all four objects (and thus the X)
explicitly removing the X from the test set evaluated the
transfer learning capabilities of the model.

Experiment 1 seeded the training of the model with multi-
object data and allowed the test data to contain imagery of the
X. Experiment 2 seeded the training of the model however
imagery of the X was no longer present in the test data.
Experiment 3 tested the transfer learning capabilities of the
model: multi-object data was not used during training and
test images did not contain the X.

Training was done by manually cropping subwindows that
either contained a full object (informative) or contained parts
of an object, environmental noise, or simply background im-
agery (non-informative). For training without seeding 31301



(a) X target (b) Square target (c) T target (d) Triangle target

(e) X in sonar (f) Square in sonar (g) T in sonar (h) Triangle in sonar

Fig. 7: Each target and its representation in sonar image space. (a)-(d) are images taken from the vehicle underwater.

subwindows were used and with seeding 31901 subwindows
were used.

We compare our results to three other architectures,
namely the Discrete Cosine Transform (DCT) method of
global image analysis, the CNN method developed by Kim,
et al. (called “two-layer CNN”) and a deeper CNN we devel-
oped inspired by Kim, et al. (called “three-layer CNN”) [23],
[7]. The DCT method extracts the frequency components of
the image as a whole and uses these components as features
for use in a neural network classifier. We use a 2D DCT,
defined for pixels m,n of an image A of size MxN as:

Bpq = αpαq

M−1∑
m=0

N−1∑
n=0

Amncos
π(2m+ 1)p

2M
cos

π(2n+ 1)q

2N
,

(3)

where

αp =

{ 1√
M
, p = 0√

2
M , 1 ≤ p ≤M − 1

(4)

αq =

{ 1√
N
, q = 0√

2
N , 1 ≤ q ≤ N − 1

(5)

and Bpq is the coefficient on the basis cosine function defined
by the constant p and q [23]. The intuition for this method
is that by converting the image to the frequency domain,
noise and strong features are easily separable and thus noise
does not impair the classification performance. The two-
layer CNN is a standard CNN architecture consisting of 2
convolutional layers (with 64 and 128 filters respectively)
max pooling, and a dense layer of size 1024. Our three-
layer CNN improves upon this by adding an additional layer
and increasing the size of the filters from 3x3 to 5x5, both
features we found to be beneficial in preliminary testing.

C. Results

To evaluate each approach we generated precision recall
curves and compared the average precision of each method.
The results presented in Table III are averaged over 20 runs.

With the goal of deploying our network on a real system, we
run our method on real sonar data played back in realtime.
Representative curves for each experiment (best viewed in
color) are shown in Figs. 8-10. We note that all of the
experiments are on highly unbalanced datasets and thus the
resulting curves are lower than expected for a classifier.

In Experiment 1, where multi-object data is used to seed
training, we find that our method achieves a higher average
precision than the DCT method and the two-layer CNN, and
performs similarly to our three-layer convolution method.
As shown in Fig. 8, it is important to note that the DCT
based method of global analysis lacks the power of deep
learning approaches in capturing the low-level features that
define similar looking objects. For Experiment 2, where the
test data does not contain imagery of the X, but the training
is seeded, we find that our model significantly outperforms
the others. This is intuitive as the use of dilated filters
allows for a more generalized approach to feature extraction.
The results of this experiment are shown in Fig. 9. In
Experiment 3 we train on imagery of the X object and
test on imagery of other objects and find that our method
outperforms all other methods. This is expected, as the atrous
filters allow for a larger neighborhood of influence when
computing the output for features that are generally on a
larger scale than that of normal camera images. As shown in
Fig. 10 it is interesting to note that the DCT based method
outperforms the purely CNN methods, demonstrating that
transfer learning capability benefits greatly from a global
perspective on the images.

TABLE III: Average precision for each method

Avg. Precision
Method Exp. 1 Exp. 2 Exp. 3

DCT 0.57±0.01 0.55±0.02 0.48±0.02
Two-layer CNN [7] 0.69±0.04 0.58±0.05 0.42±0.04
Three-layer CNN 0.70±0.05 0.64±0.04 0.42±0.03

Atrous Convolution (ours) 0.72±0.02 0.68±0.03 0.54±0.04



Fig. 8: Representative precision recall curves of each ap-
proach tested on an unbalanced dataset with the seeding of
multi-object data and the inclusion of the X object in the test
set.

Fig. 9: Representative precision recall curves of each ap-
proach tested on an unbalanced dataset with the seeding of
multi-object data but without the X object in the test set.

V. CONCLUSION

In this work we developed a method for perceptual quality
assessment in underwater sonar images. We showed that
using dilated filters is particularly appropriate in sonar im-
agery since the features are often on a larger scale than
those of analogous camera features. We showed that this
method achieves a higher average precision than state-of-
the-art methods in the transfer learning case, a situation
important in deploying vehicles into the world. This ability
to assess sensory data increases the autonomy of underwater
vehicles, which are oftentimes monitored by one or more
dedicated human operators.

Fig. 10: Representative precision recall curves of each ap-
proach tested during the transfer learning case on a highly
unbalanced dataset.

One such example of increased autonomy involves the
underwater environment reconstruction process. Given the
absence of a generalized approach to automatic feature
extraction from sonar imagery, oftentimes a human operator
must hand-label the features [5]. These hand labeled fea-
tures can then be used later for tasks such as environment
reconstruction. In hand labeling the frames, much time is
spent by the human analyzing imagery that does not contain
useful features, thus creating a large time gap between data
collection and reconstruction. Our work would allow for a
proposal system where only frames with a clear object are
given to the human for hand labeling, greatly reducing the
amount of time the human spends analyzing imagery and de-
creasing the gap between data collection and reconstruction.

There also still exists work in utilizing the location of
the subwindow in the image space to complete missions
more intelligently. Previous work used this information to
track another vehicle’s trajectory [7]. Of particular interest
for us is utilizing this information for further automating the
reconstruction process. Our Seabotix vLBV300, like many
underwater systems, maintains its local position using a
Doppler Velocity Log (DVL). This data can be used to
project objects from the image space to the real world,
allowing for more intelligent mission planning.
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